
a neither theoretical nor practical guide

a zine by this.xor.that

noisy pixels

2 noisy pixels v0.3

hello! you’ve found this.xor.that’s first
zine. it’s about one of my favorite things:
random pixels.

who is this.xor.that
I’m a creative coder who makes art with
code. I’m also Jessica Stringham, a machine
learning engineer who makes data do things
with code. I use noise in both art and
machine learning.

who is this for
okay good question. I guess it’s for me-
a-few-months-ago. it tries to share some
connections I saw. but watch out,
this zine is not very practical

it’ll get into the weeds and won’t give you all the
tools to get started

nor very theoretical

it’ll gloss over both the basics and the hard work
people do to make sure these things work

it’s the zine I wanted to make. so maybe
it’s more of a love letter to noisy pixels?
this zine will probably leave you wanting
more. if so, there’s a lot to seek out!
Statisticians! Artists with interesting
filters! Computer graphics engineers! Weird
textures out in the world! and I guess if
you do that, then this zine is for you too.
trends come from ups and downs that can feel random.
sunny February days and snow in late May, but it’ll be
summer soon.

this.xor.that brooklyn February 2023

3noisy pixels v0.3

let’s start with a little
square of random* noise.

*okay it’s pseudo-random noise, but we’ll
get to that

plz admire this for a bit. -->

this type of noise is
distributed uniformly.

if we zoom in... -->

if we make a little histogram
of all the different values in
that image, we’d get a uniform
distribution.
that’s what’s special about uniform
distribution! every value is
equally as likely. -->

0 1.4 .8

we can say each pixel represents some number between 0.0 and 1.0 ↓

0.0 1.00.5

you can take a sample of any size, and usually you’ll end up with
roughly the same shape.

4 noisy pixels v0.3

you can do this on top of any
grayscale image.
<-- for example, to this gradient
well, if you squint, you might notice
that the noisy one looks darker. that’s
because of how we perceive things.

you can also remap the range of your noise

0 1

↑ x 0.2 - 0.1 = ↓

and add to a gradient or other image.
this can be used to stretch a small number
of grays to make a smoother gradient.
though you may want to use a different
type of noise.

I adjusted the range to be from 0.1 to 0.9 so that we
don’t go out of 0.0 and 1.0. you can also clip values!

you can also turn the uniformity
into specks by only showing
values above a certain amount.
if you want 90% of pixels to
be on, you could turn values
on when your random noise is >
0.9.
here are a few other examples -->

> 0.9 > 0.5 > 0.1

> =

-0.1 0.1

5noisy pixels v0.3

you can also use noise to
displace pixels in an image.
Like if we stretch out just one
row of random noise, and then
use that value to move pixels
around.
that’s how the titles of this
zine were made!

you can also make structured or
meaningful data look noisy just
by making it complex enough that
patterns don’t show up.

<- this image uses a specific
formula to arrange rectangles, but
the effect is similar to applying
noise.

another source of complexity
that looks like noise is opening
a file in the wrong format, e.g.
an audio file as an image.
here’s this ↑ opened as text -->

?*???^????{?7?-6???Y}?????笗
ZGbtM|7?V??2???5Ժ??h~?3N,c޻N?y?^???Q?}?n
䱫4s??K:??*o	 ot?L??@?u?<??p???G_
Z=?U??&?]ry?>”w??ʃ?rf??z?h??ֳG+?Utw-{?4]
ɷ?F??^Eg?P”>W?l?
 ?F?,㜌w?????`G?e?@gW?z???

6 noisy pixels v0.3

Gaussian noise shows up in a bunch of
places. it puts more values near the
center, and values can be extreme.
here is a histogram of the kinds of values that
show up. Compare it to uniform distribution on
the previous page! ↓

Simplex and its predecessor
Perlin noise are important in
computer graphics. they look
noisy, but are not actually
independently random: values
near each other have similar
values.

this looks more similar to
things in the real world, like
mountains or clouds.

a sample from opensimplex -->

-3 30

Gaussian Uniform

tbh, I rarely use gaussian for noisy pixels. but the
distribution is useful for other things! future zine?

7noisy pixels v0.3

Perlin and Simplex noises work
a little differently than our
other sources of noise. you
usually end up with a 2d or 3d
space that you sample from. you
can adjust the noise using the
scale: taking samples really
close to each other will get
smooth shapes where neighbors
are more influenced by each
other, and taking samples really
far away from each other will
start to look more like random
noise.

you can zoom in (top) or out
(bottom) for different effects.
(the values are smoothed to show
the shapes a little better) -->

A trick to turn something like
simplex noise into clouds is to
repeatedly scale it down and add
it. ↓

8 noisy pixels v0.3

while random noise has
properties that are invaluable
for many applications, it does
get a bit clumpy, and sometimes
that’s not the effect you’re
looking for.
a more spatially evenly
distributed noisy effect uses
the void-cluster algorithm.
here we select noise values < 0.1
for a noisy texture created with the
void-cluster algorithm and compare
it to a uniform distribution -->

void-cluster algorithm can be
used to generate a blue noise
texture.
the first stage is taking an
image of a small amount of
random noise and getting those
better distributed.
there’s a neat trick to find
the most crowded pixel: blur
the image, mask with the pixels
that are on: the brightest
pixel is the most in a cluster.
then do the reverse and find
the emptiest part of the void,
and swap those two pixels.

blur the
image to
find the
clusters
and voids
<--

pick out
the pixel
in the
brightest
cluster,
and swap
with a
pixel in a
void -->

Blue < 0.1 Uniform < 0.1

9noisy pixels v0.3

I want to wrap up by talking about where uniformly distributed
random numbers come from.

in fields like cryptography, you want it to be extremely difficult for an adversary
to guess your random number. this is usually less important in creative coding

deterministic random number generators
In many cases in creative coding and
machine learning, it’s pretty nice to be
able to run the same code and get the same
results! rngs do this if you set the seed,
and changing the seed will give you a new
set of random numbers. hash functions do
this since they promise to give you the
same value for the same input. you can
append a seed value to the input if you
want a new random number generated.
noise created with different seeds -->

generating random numbers in parallel
when you’re working across a lot of pixels
on a GPU or (a lot of machines), sometimes
you need to generate a random number without
waiting for the rng to finish the other
pixels.
a trick is to pass an identifier (like
the pixel location) through some function
that gives you a number from a uniform
distribution. one approach is to use hashing
functions, which were made to distribute
objects evenly in computer memory. you might
see a function like fract(sin(...)) used in
shaders.

generating random numbers sequentially
a lot of programming languages have you
initialize a random number generator (rng)
object, and then call it every time you need
a new random number.
some of these use linear congruential
generators, which do a simple operation on
the previous random number to create the
next one.

[rng] -> .237
 ↓
[rng] -> .913
 ↓
[rng] -> .832
 ↓
[rng] -> .210
 ↓
[rng] -> .513
 ↓
[rng] -> .002
 ↓
[rng]

rng(0,0) -> .237

rng(0,1) -> .913

rng(0,2) -> .832

rng(1,0) -> .210

rng(1,1) -> .513

rng(1,2) -> .002

10 noisy pixels v0.3

random pixels
soften images with
very calculated
mistakes.

we’re good at
finding patterns,
it’s hard to be
noisy.

11noisy pixels v0.3

Thanks for sticking around!

Errors
if you find an error, first check this page to see if
you’re on the latest version.
 https://thisxorthat.art/zines/noisypixels
if it’s still there, email me at
 jessica@thisxorthat.art
with the error and if/how you want to be attributed.

Attributes
this is typeset in Fira Code

the images were all created by me, this.xor.that,
using Python (numpy and matplotlib) or by Rust (wgpu,
nannou). The text was written in February and it
was finished in October 2023. It was last updated
11/02/23. This was laid out in InDesign.

Some other links
* https://thebookofshaders.com/ has a nice series on
noise
* https://www.wedesoft.de/software/2022/09/21/blue-
noise-dithering/ is useful for void-cluster and blue
noise

